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Abstract

The spatial pattern of the uncertainty in air pollution-related health impacts due to climate change 

has rarely been studied due to the lack of high-resolution model simulations, especially under the 

Representative Concentration Pathways (RCPs), the latest greenhouse gas emission pathways. We 

estimated future tropospheric ozone (O3) and related excess mortality and evaluated the associated 

uncertainties in the continental United States under RCPs. Based on dynamically downscaled 

climate model simulations, we calculated changes in O3 level at 12 km resolution between the 

future (2057–2059) and base years (2001–2004) under a low-to-medium emission scenario 

(RCP4.5) and a fossil fuel intensive emission scenario (RCP8.5). We then estimated the excess 

mortality attributable to changes in O3. Finally, we analyzed the sensitivity of the excess mortality 

estimates to the input variables and the uncertainty in the excess mortality estimation using Monte 

Carlo simulations. O3-related premature deaths in the continental U.S. were estimated to be 1,312 

deaths/year under RCP8.5 (95% confidence interval (CI): 427 to 2,198) and −2,118 deaths/year 

under RCP4.5 (95% CI: −3,021 to −1,216), when allowing for climate change and emissions 

reduction. The uncertainty of O3-related excess mortality estimates was mainly caused by RCP 

emissions pathways. Excess mortality estimates attributable to the combined effect of climate and 

emission changes on O3 as well as the associated uncertainties vary substantially in space and so 
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do the most influential input variables. Spatially resolved data is crucial to develop effective 

community level mitigation and adaptation policy.
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1 Introduction

Climate change, such as changes in air temperature, precipitation and air circulation, and 

emission change, can affect the chemical reactions in both gas phase and aerosols; and thus 

may further impact air quality. In particular, tropospheric ozone (O3) has been of concern in 

the context of climate change because the production of secondary air pollutants depends 

strongly on meteorological conditions. Exposure to elevated O3 concentrations have been 

associated with excess mortality (EM), including respiratory and cardiovascular mortality 

(Bell et al. 2004; Jerrett et al. 2009; Levy et al. 2005).

Previous studies have estimated air pollution-related health impacts due to future climate 

change (Bell et al. 2007; Chang et al. 2010; Jackson et al. 2010; Knowlton et al. 2004; Post 

et al. 2012; Tagaris et al. 2009). For example, Bell et al. (2007) found that O3 levels are 

estimated to increase under the Intergovernmental Panel on Climate Change (IPCC) Special 

Report on Emissions Scenarios (SRES)-A2 scenario, with the largest increases in cities with 

present-day high O3 pollution. The elevated O3 levels correspond to approximately a 0.11% 

to 0.27% increase in daily mortality for 50 cities in the United States (U.S.). Knowlton et al. 

(2004) found a median 4.5% increase in O3-related acute mortality in New York City and 

the surrounding counties under the SRES-A2 scenario. Post et al. (2012) addressed a wide 

range of O3-related health effects, from roughly 600 deaths avoided to 2,500 deaths 

attributable to climate change in the U.S.; the heath impact varied by modeling choices for 

O3 concentration simulation, as well as by assumptions for future climate and population 

change. Using the SRES-A1B scenario, the same population, and the same air pollutants 

emissions as in 2001, Tagaris et al. (2009) found that the O3 change due to future climate 

change could cause an increase in annual premature deaths by 300 deaths in 2050 across the 

continental U.S.

However, the studies reported so far have a few limitations. First, few studies have 

comprehensively investigated the uncertainty of air pollution-related EM estimates 

reflecting all possible sources. Knowlton et al. (2004) performed sensitivity analyses 

focusing on emission change, population growth, and subsequent O3 change. Post et al. 

(2012) investigated the sensitivity of their estimates to modeling choices for the simulation 

of future O3 levels and reported national-level results. The uncertainties of EM estimates 

related to air quality changes due to climate change can be attributed to various factors, such 

as greenhouse gas (GHG) emissions scenarios, model performances, concentration-response 

functions (CRF), population growth, spatial domain, grid resolution, periods modeled, and 

mortality rates, all of which may vary in space. Therefore, uncertainty analyses, including all 

Kim et al. Page 2

Clim Change. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the variables associated with health risks due to future climate change and considering the 

spatial variation of the uncertainties, should be taken into account.

Second, the estimated impacts on population health can be significantly influenced by 

emission scenarios. To date, few studies have evaluated the health impact of future O3 

concentration changes based on the latest GHG emission scenarios, i.e., the Representative 

Concentration Pathways (RCPs) (Moss et al. 2010; Van Vuuren et al. 2011). As a set, the 

RCPs cover a range of forcing levels associated with emission scenarios published in the 

literature, representing present and planned air quality legislation for the projection of 

regional air pollutant emissions, as well as GHG atmospheric concentrations. Therefore, the 

combined effect of air pollutant emissions and GHG concentration changes on air quality 

could differ from previous studies based on SRES and subsequently result in a different 

health impact. West et al. (2013) simulated the co-benefits of global GHG reductions on air 

quality and human health based on RCP4.5. However, the study focused on the effect of 

GHG reductions at the global and regional scales, and neither analyzed the uncertainty of the 

estimated EMs, nor estimated community-specific EMs.

Finally, few studies have analyzed the distribution of the estimated impacts of O3 at a fine 

spatial scale over a large region. Bell et al. (2007) presented O3-related mortality covering 

50 cities in the U.S., but did not focus on the spatial variation of EM. Post et al. (2012) also 

did not analyze the spatial variation of O3-related health impacts of climate change, but 

focused on the variation of health impacts related to modeling choices. Tagaris et al. (2009) 

presented spatially resolved O3-related EM, but only state-level estimates were reported. 

The most recent study by West et al. (2013) is based on the spatial resolution of 2°×2.5°, 

which is far beyond community size.

In this analysis, we applied high-resolution climate model simulations to project the change 

in O3 levels under two RCP emission pathways over the entire continental U.S. Then, we 

calculated the change of county-level EM due to exposure to O3 in the future (2057–2059) 

from the base years (2001–2004). Finally, we characterized the uncertainty in the health 

impact estimates through each stage of health risk modeling.

2 Methodology

2.1 Air quality simulations

A coupled global and regional climate modeling system was developed to provide 2001–

2004 and 2057–2059 air pollution levels in the continental U.S. at 12 km resolution. The 

configuration and evaluation of this system are briefly described here (More details are 

addressed in our previous study, Gao et al. 2013). The state-of-the-art earth system model 

Community Earth System Model version 1.0 (CESM1.0), developed at the National Center 

for Atmospheric Research (NCAR), can simultaneously simulate the Earth’s atmosphere, 

ocean, land surface, and sea-ice (Gent et al. 2011). In this study, the atmospheric chemistry 

was integrated with the atmospheric component, Community Atmosphere Model, referred to 

as the CAM-Chem (Lamarque et al. 2012). CESM/CAM-Chem was used in the long-term 

global climate and chemistry simulations, from 1850 to 2005 as present climate and 2005 to 

2100 for RCP4.5 and RCP8.5, with a spatial resolution of 0.9° (latitude) ×1.25° (longitude). 
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The CESM-projected meteorological fields were used as the initial and boundary conditions 

of the regional climate model, Weather Research and Forecasting model (WRF) 3.2.1 

(Skamarock and Klemp 2008). Chemical species simulated by the atmospheric chemistry 

component of the CESM/CAM-Chem were mapped to the regional air quality model, 

Community Multi-scale Air Quality Model version 5.0 (CMAQ 5.0; Wong et al. 2012).

We selected RCP4.5 and RCP8.5 to evaluate and compare future O3 level and its related 

health impact. RCP4.5 corresponds to the stabilization of radiative forcing at 4.5 W/m2 in 

the year 2100 without ever exceeding that value, and it assumes a lower population growth 

rate, high income, and rapid technology development (Thomson et al. 2011). RCP8.5 is a 

high-GHG emission pathway corresponding to the stabilization of radiative forcing at 8.5 

W/m2 in the year 2100, and it assumes high population growth rate, lower income, and 

lower technology development rate in developing countries (Riahi et al. 2011). The 

emissions trends in the RCPs are mainly controlled by the driving forces (population, 

income, energy use, etc.), climate policy, and air pollution control policy (Van Vuuren et al. 

2011). In terms of climate policy, RCP4.5 has more stringent GHG emissions control, while 

RCP8.5 assumes no climate policy, even though both scenarios are projected to increase the 

use of renewable resources. Unlike the SRES scenarios, where anthropogenic emissions 

related to air pollutants have a modest decrease or even increase (under A1FI), all RCPs 

include stringent air pollution control policies with any increase in income. Thus, under the 

RCPs, O3 precursors including carbon monoxide (CO), nitrogen oxides (NOx), and non-

methane volatile organic compounds (NMVOCs), are projected to decrease in the U.S. (See 

Table 2 in Gao et al. (2013) for projection factor for anthropogenic emissions). However, the 

GHG emissions increase, particularly the methane concentrations under RCP8.5, will 

negatively affect O3 air quality. As a result, the projected O3 levels in 2057–2059 in this 

study reflect the influence of both climate change and emissions control on O3 precursors.

Using CMAQ-simulated hourly O3, we computed annual means of maximum daily 8-hour 

average O3 (MDA8 O3) and maximum daily 1-hour average O3 (MDA1 O3) for each 12 km 

grid cell. We then aggregated the 12×12 km grid of O3 concentration to the county level 

(3,109 counties in the continental U.S.). We determined the population-weighted centroid of 

each county and then averaged the data in the nine grid cells closest to the centroid. We 

calibrated the simulated O3 level for bias reduction. To compare the CMAQ-simulated 

values with observations at the county level, we used monitored data from the U.S. 

Environmental Protection Agency (USEPA) Air Quality System (USEPA-AQS) and the 

Environmental Benefits Mapping and Analysis Program Community Edition 1.0.8 

(BenMAP-CE) developed by the USEPA (USEPA 2012). Using BenMAP-CE, we 

calculated county-level O3, applying the Voronoi neighbor averaging algorithm, which 

interpolates monitored O3 data to unmonitored locations. BenMAP-CE first identifies the set 

of monitors that best “surround” the population center of the grid cell and then takes an 

inverse-distance weighted average of the monitoring values (Fann et al. 2012; USEPA 

2012). We matched the CMAQ-simulated values with the interpolated, county-level 

observations for 2001–2004. After calculating the county-level ratios of CMAQ simulations 

over observations in the base years, we calibrated the CMAQ-simulated MDA8 O3 and 

MDA1 O3 concentrations for both 2001–2004 and 2057–2059 using these calibration ratios 

for each county (Figure S1, Supplementary Material).
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2.2 Projection of future population

The county-level population projections for 2055 were taken from the Integrated Climate 

and Land-Use Scenarios (ICLUS) project (USEPA 2009). The ICLUS population 

projections were based on a standard cohort-component method, in which the initial U.S. 

population in 2005 was divided into age-, gender-, and race/ethnicity-specific cohorts. 

Cohort size was estimated over time separately for each cohort, with various scenarios 

regarding fertility, mortality, and migration (Preston et al. 2001). In ICLUS, four scenarios 

were considered: A1, low fertility, high net domestic migration, and high net international 

migration; B1, low fertility, low net domestic migration, and high net international 

migration; A2, high fertility, high net domestic migration, and medium net international 

migration; and B2, medium fertility, low net domestic migration, and medium net 

international migration, with the categories (i.e., low, medium, and high) defined in the 

IPCC-SRES. Mortality rate was kept constant across all scenarios because the U.S. Census 

Bureau did not release alternative scenarios for mortality rates. Although the four ICLUS 

scenarios did not cover the widest possible range of population size, they represented 

combinations of potential fertility, mortality, and migrations in the future. A more detailed 

discussion on ICLUS population projection was presented elsewhere (USEPA 2009).

2.3 Excess mortality due to exposure to air pollution

To calculate baseline future mortality incidence without the impact of climate and O3 

precursors changes, we used predicted county-specific mortality rates adopted in BenMAP-

CE, which is derived from a projected, age-specific ratio of the 2050 mortality rate to the 

2005 mortality rate. The mortality rates do not, however, explicitly account for climate 

change. The basis for the future mortality rate projection is described in detail elsewhere 

(USEPA 2012). We used non-accidental, all-cause mortality to be consistent with the CRF 

used in this study.

To calculate EM due to O3 exposure, we based the CRFs on the association between non-

accidental, all-cause mortality and short-term exposure to MDA8 O3 (Bell et al. 2004) and 

MDA1 O3 (Bell et al. 2004; Levy et al. 2005). Bell et al. (2004) analyzed the relationship 

between O3 and non-accidental, all-cause mortality using the National Morbidity, Mortality, 

and Air Pollution Study (NMMAPS) dataset, which covers 95 U.S. cities. Levy et al. (2005) 

derived the relative risk from meta-analyses of 27 studies for North America. There might 

be publication bias in the meta-analyses results. Nevertheless, the cities chosen in these 

studies have a wide range of O3 concentrations and represent both rural and urban 

populations. We therefore applied the CRF coefficients in Bell et al. (2004) and Levy et al. 

(2005) (Table S1, Supplementary Material).

Finally, we estimated the change in county-level EM as follows (Fann et al. 2012; Post et al. 

2012):

(1)

where Δy is the expected number of deaths per year attributable to changing O3 level at 

county i; POPi is population in county i; MRi is population mortality rate; POPi×MRi 
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indicates baseline mortality incidence (i.e., assuming no climate change and O3 precursors 

emission change); β is the coefficient of the concentration-response function for O3; ΔCi is 

the concentration difference of O3 between 2057–2059 and 2001–2004.

We estimated EM for non-accidental, all-cause mortality associated with O3 for both year 

round and warm season (May through September). Lastly, we analyzed the spatial variation 

of EM by county and the nine climate regions defined by the National Climatic Data Center 

(http://www.ncdc.noaa.gov/temp-and-precip/us-climate-regions.php) (Fig. 1).

2.4 Sensitivity and Uncertainty analyses

To determine the sensitivity of the EM to various factors (i.e., two RCPs, four future 

population projections, and three CRF coefficients), we conducted an analysis of variance 

(ANOVA) for EM estimates to decompose the total variability in estimated EM into the 

contribution of each factor. In contrast to the approach in a previous study (Post et al. 2012) 

which used national-level EM estimates, we conducted the ANOVA by county and then 

calculated the county-level percentage of sum of squares (SS) for RCPs, population 

projections, and CRF coefficients. We also plotted the county-level percentage of SS to 

visually analyze the spatial distribution of the sensitivity to the factors.

The ANOVA apportions the variability in the mean estimated air pollution EM in each 

county to the mean levels of each factor in Equation 1 without considering their 

uncertainties (i.e., each factor has a distribution of possible values). We used Monte Carlo 

simulations to evaluate the uncertainty of EM estimates attributable to the ranges of CRF 

coefficients, mortality rates, and concentration changes of O3. CRF coefficients and 

mortality rates are assumed to be normally distributed with independent, county-specific 

means and standard errors. As there is no standard error for the projected 2050 mortality 

rate, we used the standard error for the year 2009 at the county level provided by the Centers 

for Disease Control and Prevention (CDC 2012). For concentration changes of O3, 

triangular-distributed random variables were generated using the minimum, maximum, and 

mean of three annual mean values. Random sampling and EM calculations were repeated 

1,000 times for each county. Then, we computed the Monte Carlo means and standard errors 

of the 1,000 EM estimates by county. By summing all the county-level EMs derived from 

the Monte Carlo simulations, we estimated national-level EM estimates and their 95 % 

confidence intervals (CIs). We also calculated the probability distributions of all the national 

EM due to future O3 change.

3 Results

3.1 O3 change

The spatial distributions of county-level O3 change between the future (2057–2059) and the 

base years (2001–2004) are shown in Figure 2. Projected O3 concentrations by climate 

region are presented in Supplementary Material, Table S2. Changes in estimated county-

level MDA8 O3 ranged from −8.8 to 7.5 ppb under RCP4.5 and from −3.6 to 11.5 ppb under 

RCP8.5 across 3,109 counties. Higher O3 increases in the Northwest, West, and West North 

Central region are likely caused by higher background O3 in the spring and winter, as well 

as an increase of methane emissions in RCP8.5 (Gao et al. 2013). Nationally, O3 was 
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projected to decrease under RCP4.5 and to increase under RCP8.5. However, O3 levels of 

most counties in the Northwest, West North Central, and West region were projected to 

increase under RCP8.5 (Fig. 2(a)). Even under RCP4.5, some counties were expected to 

have higher O3 levels (Fig. 2(b)).

3.2 O3-related excess mortality

Table 1 shows the estimated national-level O3-related EM changes between 2001–2004 and 

2057–2059 under the two RCPs. We derived national EM estimates in Table 1 from the 

summation of county-level EMs for each ICLUS population scenario and the average of the 

four ICLUS-based national EMs. Our 95% CIs in Table 1 are based on 4,000 national-level 

EMs (1,000 times of Monte Carlo simulations for four population projections) for each RCP. 

O3-related EMs vary by emission pathway, population projection, and CRF. Under RCP8.5, 

increased MDA8 O3 resulted in ~1,900 (95% CI: 1,700 to 2,100) premature deaths per year 

nationwide, when county-level EMs derived from the Monte Carlo simulation were summed 

using the four population projections in 2057–2059 and CRF from Bell et al. (2004). In 

contrast, decreased MDA8 O3 under the RCP4.5 resulted in the avoidance of ~1,600 (95% 

CI: 1,300 to 1,800) deaths per year. Projected county-level baseline mortality incidence for 

2055 is shown in Supplementary Material, Figure S2. During the warm season, lower future 

MDA8 O3 levels could result in ~2,400 (95% CI: 2,100 to 2,700) avoided premature deaths 

under RCP4.5 (Table 1). Most of the counties would see a decrease in all-cause mortality 

under both RCPs, mainly as a result of lower O3 levels, while some counties in the West and 

Northwest would see an increase due to higher O3 levels (Supplementary Material, Figure 

S3(a) and (b)). Decreases in the EMs under RCP8.5 during the warm season, unlike year-

round mortality, are related to decreases in O3 in summer. In other seasons, increases in 

EMs are due to higher O3 under RCP8.5 (Gao et al. 2013).

County-level, O3-related EM estimates had high spatial variation (Fig. 3). Under RCP8.5, 

most counties in the Northwest, West North Central, and West were estimated to have an 

increased O3-related EM. Counties with a high population, such as Los Angeles County in 

California and Cook County in Illinois, showed higher increases in O3-related EM. The EMs 

in these counties appeared to increase even under RCP4.5 (Fig. 3(a)), despite the overall 

reduction in O3-related EM (Table 1). The spatial distribution for O3-related EM per 

100,000 persons was different from that of the absolute values showing greater spatial 

heterogeneity. All counties in the Northwest showed higher increases in O3-related EM per 

100,000 persons whereas many counties in the South and Southeast had decreased rates 

under RCP8.5 (Fig. 3(c)). The standard errors of county-level EM estimates also had high 

spatial variations as presented in Fig. 3(d) and (e) with Southern California showing the 

greatest standard errors.

3.3 ANOVA analysis

Table 2 shows the percentage contribution of county-level SS from factors in Equation 1 

(i.e., CRF coefficient, population, and RCP) to the total SS based on the ANOVA analysis. 

A greater percentage reflects higher sensitivity of the EM to a specific factor. Overall, O3-

related EM estimates were the most sensitive to the RCP, which account for almost 80% of 

the total SS.
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However, factor contributions also vary widely in space (Fig. 4). Counties in the Northwest, 

West North Central, West, and Southwest had higher sensitivity to the RCP scenarios (Fig. 

4(a)), since the projected O3 levels in these regions switched from a projected decrease 

under RCP4.5 to an increase under RCP8.5 (Fig. 2(a) and (b)). In contrast, counties in the 

Central, South, and Southeast had a higher sensitivity to the population projections.

3.4 Uncertainty analyses

Figure 5 shows the probability distribution of the estimated, national-level O3-related EMs 

(the national EM is the sum of county-level EMs and each scenario has 1,000 national EM 

estimates based on the county-level Monte Carlo simulations), accounting for MDA8 O3 

and MDA1 O3, two different CRF coefficients, and four population scenarios. O3-related 

EMs ranged from 427 to 2,198 (95% CI) deaths per year, with a mean of 1,312 deaths per 

year under RCP8.5; and from −3,021 to −1,216 (95% CI) deaths per year, with a mean of 

−2,118 deaths per year under RCP4.5. The RCPs played a critical role in estimated, O3-

related EM because O3 levels were found to increase under RCP8.5 in 2057–2059, but 

decrease under RCP4.5 compared with 2001–2004. The probability distribution of the 

estimated national EM is not smooth because of discrete population projections, averaging 

hours, and CRF ranges, but its two distinct modes follow the RCPs (Fig. 5(a)). The 

combined probability distribution function from the two RCPs predicts a ~50% chance that 

national O3-related EM will be greater than the base years, and a ~10% chance that O3-

related EM in the future will be over 1,900 deaths per year more than the base years (Fig. 

5(b)).

4 Discussion

Our results based on high-resolution climate model simulations illustrate that the effect of 

O3 change on mortality varies by emissions pathway, population projection, and CRF. Even 

within the same RCP and population scenario, the estimated EMs appear to vary 

substantially in space as both simulated O3 level and baseline mortality incidence vary by 

community. The large spatial variability emphasizes that assessments of the health effect of 

future O3 change caused by climate change and emission policy should be spatially resolved 

so that the mitigation and adaptation policy developed based on these assessments can be 

more cost effective.

Our results from the combined effect of climate change and emissions reductions on O3 

precursors are consistent with a previous study by Tagaris et al. (2007), which reported 

decreases in mean summer MDA8 O3 concentrations when both climate change under the 

SRES A1B scenario and reductions in air pollutant emissions were considered. The results 

of the current study also demonstrate that future O3 level during the warm season will 

decrease under the RCPs because of the emission reduction for O3 precursors planned in the 

U.S., which resulted in avoided adverse health effects of potential climate change-induced 

O3 increase.

Annual changes in O3 levels between 2057–2059 and 2001–2004 showed dramatic 

differences between the two RCPs (i.e., the increase under RCP8.5 and decrease under 

RCP4.5). The projected emissions in RCPs consider both GHGs changes and air pollution 
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control policies (Moss et al. 2010; Van Vuuren et al. 2011). The GHG emission scenarios 

based on the RCPs are comparable with SRES scenarios. For example, the CO2 

concentrations in RCP4.5 and RCP8.5 are close to SRES B1 and A1FI, respectively (Meehl 

et al. 2011). The air pollutant emissions under SRES are projected to decrease only slightly 

or, depending on the emissions scenario, even increase. However, the RCPs assume that by 

the end of 2050s, CO is projected to decrease by more than 70% under both RCPs, and 

NMVOC and NOx by almost 70% and 50% under RCP8.5 and 40% and 60% under RCP4.5 

in the U.S., respectively (Gao et al. 2013). On the other hand, methane emissions are 

predicted to increase by 61% in 2050s under RCP8.5, compared to 2005, whereas it would 

decrease by 10% under RCP4.5 (Gao et al. 2013). Such differences in methane mixing ratios 

under the two RCPs will affect O3 levels more greatly than the difference in NOx emissions 

(Lamarque et al. 2011). West et al. (2013) also pointed out that O3 reduction is largely 

(89%) due to co-emitted air pollutants in 2100, with only 11% explained by the change in 

meteorology due to climate change; and is strongly influenced by the decrease in methane 

emissions under RCP4.5. Therefore, we can infer that the increase in annual O3 under 

RCP8.5, despite the decrease in other O3 precursors, is mainly caused by the increase in 

future methane emissions.

Annual changes in O3 levels between the present and the future vary substantially by region. 

Under RCP8.5, O3 levels in the Northwest, West, and West North Central were projected to 

increase more than the other regions (e.g., an annual increase of 2.6 ppb in MDA8 O3 in the 

Northwest (Supplementary Material, Table S2)), resulting in more O3-related EM (Fig. 2(b) 

and Fig. 3(b)). Both the sensitivity and the uncertainty of the EM estimates also vary by 

region. The dramatic changes in annual O3 between RCPs played a critical role in the high 

sensitivity of O3-related EM to RCP. The high sensitivity of O3-related EMs to the RCPs 

could be related to the strong dependence of O3 production on temperature (Seinfeld and 

Pandis 2006) as well as the methane emission difference between the two RCPs.

A major strength of our study was our use of O3 simulations at a high resolution (i.e., 12×12 

km). We analyzed county-level spatial variations and uncertainty of the EM due to 

emissions changes, as well as climate change. Previous studies were mostly based on coarser 

spatial resolutions (e.g., 36×36 km). By providing a better representation of the atmospheric 

circulation and topographical features, our high-resolution simulations generated more 

accurate O3 levels. Furthermore, we considered several possible sources of uncertainty, 

including RCP-based O3 change, population growth, mortality rate, and CRF. The 

framework to analyze the uncertainty of health effect of climate change proposed in this 

study can be utilized in decision support for developing both national and community level 

adaptation policy. To the best of our knowledge, this is the first RCP-based uncertainty 

analyses on the health impacts of air pollution change.

Our study has a few limitations. First, limited by computational resources, we did not 

consider differences between model systems to predict climate and O3 changes in the 

sensitivity analyses. It is related to high resolution model simulations which our analyses are 

based on and to the fact that there are very limited applications of dynamical downscaling 

under the new RCPs until now (Gao et al. 2013). As a result, our findings do not reflect the 

uncertainty related to using different climate models. Second, we used CRFs derived from 
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short-term exposures to O3, as there are currently no epidemiological data based on long-

term effects for all-cause mortality with statistical significance. However, the effects of 

short- and long-term O3 exposure on all-cause mortality will remain unclear until 

epidemiological research investigates the association of all-cause mortality to long-term O3 

exposure (Fann et al. 2012). When we assessed the uncertainty from CRFs in the Monte 

Carlo analysis, we gave each study equal weight. This could artificially inflate our final 

uncertainty estimates. Thirdly, only three future years (2055–2057) were simulated for 

future O3 changes in this study due to limited computational resources. More studies 

including more years are required in the future. Lastly, it would be more appropriate to sum 

estimated daily excess mortality over the years than to estimate based on annual averaged 

O3 changes since the CRFs are based on daily data. However, because CMAQ-simulated O3 

is driven by climate projections, daily O3 levels have too much uncertainty and daily-level 

calibration of future O3 levels is not meaningful. Further investigation is needed to 

determine the impact of our simplified method on the EM estimates.

5 Conclusions

Using the latest emissions pathways (RCPs), which reflect both planned air quality 

legislation and GHG emission changes for the future, we analyzed county-level O3-related 

EMs attributable to O3 changes in the late 2050s and their related uncertainties. The 

importance of spatially resolved analysis is demonstrated in our O3-related EM estimates. 

County-level, O3-related EM estimates have a wide spatial variation, ranging from positive 

to negative values and depending on the RCP and region. When both RCPs are considered 

together, the probability of climate change causing a more substantial public health impact 

(e.g. over 1,900 excess deaths nationwide) is not trivial, and this burden will fall 

disproportionally on the Northwestern U.S. Furthermore, regardless of the reduction in 

emissions of some O3 precursors, O3-related EM may still increase in the U.S. under 

RCP8.5, a fossil fuel intensive scenario. To prevent the potential adverse health effects due 

to O3-level increases triggered by climate change, it is necessary to rigorously mitigate 

GHGs and O3 precursor emissions in order to obtain a lower-carbon dependent future.

The uncertainties in the estimated EM are driven by the emission changes described in the 

RCPs, epidemiological studies, and population projections, all of which include a wide 

range of possible values to date. Because the contribution and importance of each factor 

varies spatially, a comprehensive evaluation of the uncertainties covering all input variables 

is necessary to produce a quantitative health impact assessment of climate change. Future 

research should also focus on gaining a better understanding of these factors to develop 

more effective mitigation strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Nine climate regions in the United States
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Fig. 2. 
Spatial distribution of O3 changes between 2001–2004 and 2057–2059 (a) and (b) are 

MDA8 O3 changes for year round under RCP4.5 and 8.5, respectively
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Fig. 3. 
Spatial distribution of excess mortality in 2057–2059 attributable to O3 changes (a) and (b) 

indicate annual of MDA8 O3–related EMs based on mortality risk from Bell et al. (2004) 

under RCP4.5 and RCP8.5, respectively (c) is EMs per 100,000 persons due to MDA8 O3 

change under RCP8.5 (d) and (e) are the standard errors (SEs) of county-level EM estimates 

The means and SEs of EMs are derived from 1,000 Monte Carlo simulations of mortality 

rate, concentration change, and CRF coefficient Each county-level EM is obtained from the 

average of four EMs from four ICLUS population scenarios
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Fig. 4. 
County-level analysis of variance (ANOVA) results (a), (b), and (c) indicate the percent 

proportion of the sum of squares of emission pathway (RCP), concentration-response 

function (CRF), and population scenario (POP) to cover the variance of mean EM 

attributable to O3 change, respectively
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Fig. 5. 
Probability distribution of all possible excess mortalities due to O3 changes under RCP4.5 

and 8.5 (a) Probability distribution; (b) Cumulative distribution of the excess mortality
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Table 1

Ozone-related excess mortality at the national level due to future climate and emission changes (2057–2059) 

compared with baseline climate (2001–2004) under the two Representative Concentration Pathways (RCPs) 

(deaths per year)a

Source of CRF coefficient
RCP4.5
Mean (95% CI)b

RCP8.5
Mean (95% CI)

Year-round

Bell et al. (2004) (8hr) −1,568 (−1,804, −1,332) 1,930 (1,723, 2,137)

Bell et al. (2004) (1hr) −2,153 (−2,438, −1,868) 900 (778, 1,025)

Levy et al.(2005) (1hr) −2,634 (−2,977, −2,291) 1,104 (986, 1,222)

Warm season (May–September)

Bell et al. (2004) (8hr) −2,401 (−2,674, −2,127)c −470 (−556, −385)

Bell et al. (2004) (1hr) −2,326 (−2,587, −2,064) −626 (−720, −533)

Levy et al.(2005) (1hr) −5,817 (−6,469, −5,164) −1,566 (−1,794, −1,340)

a
Values are the averages of four population projections;

b
95% confidence intervals based on means and standard errors of national-level EM estimates obtained from the summation of county-level EMs 

under four population scenarios;

c
The O3-related EMs for warm season are greater than those for year-round, mainly because O3 concentration changes for the warm season are 

greater than those year-round.
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Table 2

ANOVA results for the percentage variance in estimated county-level excess mortality explained by various 

factors (%)a

Population
Mean (SD)b

RCP
Mean (SD)

CRF
Mean (SD)

Residuals
Mean (SD)

Year-round 11.2 (13.2) 79.5 (16.6) 2.3 (2.9) 6.9 (5.5)

Warm season (May–September) 15.0 (13.7) 35.5 (16.6) 36.9 (14.7) 12.6 (4.1)

a
Four population scenarios, two Representative Concentration Pathways (RCPs), and three concentration-response functions (CRFs);

b
Standard deviation of county-level proportions (%)
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